AMT Overview

Introduction

The Analytics Middle Tier (AMT) is a collection of SQL views that enable data analysts to better understand and access data in an Ed-Fi ODS / API while building reports and analytics.

The sections below provide the historical context and functional analysis that led to the initial development of the AMT in 2018.

Background

Problem Definition

Analytics tools offer the great promise of uncovering insights by making visible the connections between data. The latest generation of tools go further by supporting self-discovery by end-users who can quickly and easily answer their own questions through creation and consumption of powerful data visualizations. These visualizations are built over a data model, which must be sufficiently intuitive to the analyst utilizing it.

The core focus of the Ed-Fi ODS is to consolidate disparate transaction data sources at the operational level to facilitate Enterprise Application Integration (EAI) across K–12 source transaction systems. The Ed-Fi ODS is highly normalized, reflecting the Unifying Data Model's design principle of defining and storing data in its most granular form. The systems that write to (and read from) the ODS are many and varied.

All of this leads to a necessarily complex data model. While this data model excels at storing and retrieving individual data records, it requires deep understanding before an analyst can build downstream aggregations. Self-service business intelligence benefits from provision of intuitive logical models overlaying the complex ODS data model, which can be more quickly understood by those designing analytics and visualizations.

Historical Ed-Fi Solutions

The Ed-Fi Alliance has developed several solutions, summarized below, that provide visualizations and/or foundational support for analytics solutions. To date, these have not achieved widespread adoption and utilization in the field. Furthermore, they do not provide a strong foundation for self-service BI reporting.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Description</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed-Fi Dashboards</td>
<td>Ed-Fi Dashboards provide a starting point for developing student performance dashboards that put real-time, actionable information at the fingertips of educators. The Dashboards include a user interface with metrics that educators identified as critical to improving student achievement.</td>
<td>Difficult to maintain or extend, both conceptually and due to the technology stack.</td>
</tr>
<tr>
<td>Ed-Fi Data Warehouse</td>
<td>The Ed-Fi Data Warehouse consists of database schema of the Ed-Fi Data Model in a dimensional format and SQL Server SSIS packages to populate the data warehouse from an Ed-Fi ODS.</td>
<td>Difficult to maintain or extend, both conceptually and due to the technology stack.</td>
</tr>
<tr>
<td>Ed-Fi ODS / API and Microsoft Power BI Starter Kit</td>
<td>A starter kit illustrating the use of Microsoft Power BI to create meaningful visualizations from an Ed-Fi ODS. Includes reports at the district, school, teacher, and student level for early warning indicators described in the Balfanz model.</td>
<td>Poor query performance; difficult to maintain and extend due to the one-to-one representation of tables and the use of complicated DAX scripting. Referring to the starter kit before AMT existed</td>
</tr>
<tr>
<td>AWS QuickSight Spike</td>
<td>Implements a portion of the reports from the Power BI starter kit, using Amazon's QuickSight reporting tool.</td>
<td>Minimal proof-of-concept. Referring to a POC before AMT existed</td>
</tr>
</tbody>
</table>

Core Concepts In Modern Business Intelligence / Analytics
Data Model and Data Visualization

A BI data model brings together data from one or more sources and generally supports:

- Data relationships
- Calculated measures
- Slicers / filters
- Data security

Many BI platforms include a proprietary database engine and modeling tools for storing data and supporting these concepts (e.g., Microsoft SQL Server Analytics Services). The key components of a BI platform, however, are the data visualizations (“reports”). These provide the graphical end-user experience that utilizes the data model.

Semantic Modelling Approaches

Normalized Tables

The ODS database is relational and normalized to avoid duplicate data storage. The web of relationships in such databases can make them difficult to visualize and understand. Extracting data from a fully normalized database requires the programmer to bring together data from many different tables, one linking to another in a series of joins. Foreign keys enforce presence of data in related tables (i.e., referential integrity).

Star Schema

A star schema approach, on the other hand, denormalizes the data, allowing duplication in columns. A fact table is at the “center” of the star. It contains keys to other entities (though they do not enforce referential integrity), along with measures — typically numeric values that can be used in aggregations. The “rays” of the star are dimension tables. These have a uniquely identifying key along with dimensions that are string descriptors. A Date Dimension tables is common, providing various string descriptors for every given day across some pre-defined range (e.g. day number, month number, year, quarter name, etc.).

Snowflake Schema
A snowflake schema starts with the star schema, with the addition of attributes tables partially normalizing the dimension tables. While a snowflake can be useful, semantic models that stay close to the star schema ideal are easier for analysts to understand.

Data Extraction

While many BI platforms now support visualizations based on external data (mashups), enterprise solutions continue to utilize data stored in analytics-optimized database engines. These require a mechanism for extracting data from source systems and loading into the target system, often applying additional business rules and transformations. The BI platforms typically contain their own ETL engine with scheduling capabilities.

The analytics engines in these BI platforms have powerful capabilities for aggregating large volumes of data and applying filters. While pre-calculating metrics in a data warehouse remains a valuable technique, self-service systems generally take advantage of the BI platform’s calculation capabilities so that algorithms can vary based on the questions being explored. For self-service systems, data transformations in ETL/ELT processes should be minimized, reshaping data to an optimized structure (e.g., a star schema) without pre-calculating metrics.

Data Security

Typical BI solutions require authorizing differing levels of access to data. For example, a teacher might be granted access to the data for students in only his classes, whereas a principal might have access to all data in her school. Many BI platforms provide mechanisms for row-level security. Ideally the implementation of row-level security will take direct advantage of the data model without need for complex scripting, and changes to data in the model would dynamically impact a user’s authorization to rows: model-driven dynamic row-level security. BI platforms have different ways of managing this. Any solution may need to provide multiple structures to support different technology choices, and to support different interpretations of federal, state, and local regulations on student data privacy.

Metrics

In the K–12 space, metrics include concepts such as attendance and grade point average — values that can be calculated from granular data in an Ed-Fi ODS. States and districts will have differing business rules for calculating metrics. For example, one state might count attendance “at school,” while another might look at attendance “in all classes” for the day, and yet another might look to a student’s presence in a specific “homeroom.” BI platform analytics engines are tuned for calculating metrics from large volumes of data. For self-serve analytics, these calculations can be made using the analytics engine’s data model rather than in the source system. If consistency of calculations is required, downstream consumers might consider pre-calculating and storing some metrics.

Original Analytics Middle Tier Solution Proposal

The Analytics Middle Tier was initially released in 2018, with a second major version released in 2020. The sections below comprise the original proposal, and the text has been kept as a historical archive.

Requirements
To summarize, analytics based on the Ed-Fi ODS would be more effective with a solution meeting these requirements:

1. Provides a simplified data model, using a star schema approach.
2. Provides granular data, minimizing the number of calculations / transformations.
3. Supports model-driven dynamic row-level security.
4. Leaves the business of extracting and loading data to the BI platform of choice (thus a conceptual middle tier rather than a logical one).

Solution: Denormalized Views

A set of dimensional views can provide the appearance of denormalization without the need to run periodic ETL processes. Such denormalized views can significantly reduce the complexity of the ODS so that the data modeler can focus on building calculated metrics in the BI platform with less time spent analyzing the ODS tables. Long-term maintenance is improved when the interface presented by the views is treated as immutable: changes in the underlying tables are hidden from the view consumers, who continue to "see" the same columns before and after core ODS data model changes.

Aggregations / calculations will not be included in the views, to the extent possible. Some data in the ODS might not be sensible at the most granular level, and thus a degree of aggregation may be required on a case-by-case basis.

The needs of the community are many and diverse. It would be impractical to provide views supporting all analytics needs. Instead, a selection of views will be provided to support some well-defined use cases. These can be modified or added to for satisfying additional use cases. The initial use case will be an Early Warning System.

Roles / Scopes of Data Access

In K–12 scenarios, several roles immediately come to mind that would clearly require different degrees of authorization to student data:

- Superintendents see data for all students in their district.
- Principals see data for all students in their school.
- Teachers see data for all students in their classes.
- Parent sees data for all their children.
- Students see only data for themselves.

Real-world usage might not map job titles to data authorization levels in such a simple manner. There may be district employees other than superintendents who need access to all students. An Assistant Principal might take the lead on checking an Early Warning system. Rather than speaking about roles, the Analytics Middle Tier views define these access scopes:

- District
- School
- Section
- Student

Other scopes can be imagined but may not be supported initially (e.g., counsellors assigned to cohorts of student).